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AN EQUATION FOR THE PROBABILITY DENSITY, VELOCITY, 

AND TEMPERATURE OF PARTICLES IN A TURBULENT FLOW MODELLED BY A 

RANDOM GAUSSIAN FIELD* 

1-V. DEEEVICH and L.I. ZAICHIK 

The motion and heat exchange of a dispersed admixture of solid particles 
suspended in turbulent flow are considered on the assumption that the 
volume concentration of the particles is small, so that the role of 
collisions between the particles is negligible. The fluctuating motion 
of the particles is governed by viscous drag from the surrounding 
turbulent flow and by forces of molecular origin which produce Brownian 
motion of the particles. 

Fluctuations in the particle temperature are caused by fluctuations 
in the heat flux to the particles in the random temperature field of the 
fluid phase. The turbulent random velocity and temperature fields of 
the carrier phase are modelled by a Gaussian random process with a given 
autocorrelation function. In spite of the fact that describing a real 
turbulent flow by a Gaussian process is a somewhat approximate 
procedure, this approach, by virtue of its simplicity, is widely used to 
construct equations for probability density distributions for turbulent 
flow velocity, and also for studying the turbulent diffusion of passive 
admixtures, and hence for admixtures of inertial particles /l-8/. 
Brownian motion of the particles is modelled by a Gaussian process that 
is B-correlated with time. 

A closed equation for the probability density functions (PDFs) of 
the velocity and temperature of particles in inhomogeneous turbulent 
flow is constructed using the method of functional differentiation; on 
the basis of the PDF equations a system of equations for the first and 
second moments of the fluctuations of the dynamic and thermal 
characteristics of the solid phase is obtained. 

1. The PDF equation. The equations of motion for a single solid particle have the form 

dR,Jdt = V, i (t) 

dV,*/dt = q-l (Vi (R, , t) - Vpi) + pi (R,., t) + fi (R, , t) 
(1.1) 
(1.2) 

where R,,* and V,, are the coordinates and velocity of the particle, Ui(x, t) is the velocity 
of the carrier flux, r,is the dynamic relaxation time for the particles in the Stokes approxi- 
mation, F,(x,t) is the bulk force acting on the particle, (for example, the force of gravity), 
and fi(x,t) describes the random force imparting Brownian motion to the particle. E.q. (1.2) 
is written on the assumption that the density of the fluid phase is substantially smaller than 
the density of the material of the particle, so that forces governed by the pressure gradient 
in the fluid and the adjoining mass, and also the Bass force in the particle equations of 
motion, can be ignored. The heat-exchange equation for a single particle has the form 

d’3,,/dt = 70-l (e, (R,,, t) - 0,) (1.3) 

where 8, is the particle temperature, @,(x,t) is the temperature of the carrier phase, and 
re is the thermal relaxation time. 

Expressions (1.2) and (1.3) are Langevin equations in which the random field of Brownian 
forces is considered to be independent of the turbulent velocity fluctuations in the velocity 
and temperature of the carrier phase. 

We will represent the velocity and temperature of the fluid phase in the form of the sum 
of averaged and fluctuating terms: 

Ul (x, t) = <Vi b, t)> + 4 (xv t). (4 (x, t)> = 0 

8, (x7 4 = <@I (x, t)> + 4 (xv t). (0, b, q> = 0 
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We introduce a PDF for the particles with respect to coordinates, velocity and temperature: 

<@ (x, V, 0, t)) = (6 (x - R,)6(V - V,.)6 (@ - @,)> (1.4) 

The averaging is carried out over samples of the turbulent fluctuation field and the 
random force field f. Differentiating (1.4) with respect to time, using Eqs.(l,l)-(1.3) and 
the properties of the S-function, we obtain 

To obtain a closed equation for <a> it is necessary to find expressions for the 
correlations <u$P), <f#), and (0,cP). To this end we consider the fields u, f and 8 to be 
Gaussian, using the Furutsu-Novikov formula /9/ 

(2 (4 R [zl> = s dxl(z (-4 2 (~4) <w > 
where z(x) is a stochastic process in x space, RIz] is a functional of the stochastic 
process z and 6Rf& is a functional derivative. 

l3y (1.6) and (1.4) we have 

0.7) 

where, for example, the functional derivative of @ with respect to the function ni 6% E) has 
the form 

(1.9) 

The functional derivatives of (I, with respect to other random functions can be expressed 
similarly. To compute functional derivatives with respect to particle coordinates, velocity 
and temperature, we will write the equations of motion and heat exchange of a single particle 
in the integral form 

R, ft) = fi,i (0) + \ d%V,i (%I (1.10) 

[vi (R,. (%h %) + 7, J’i (R, (%). E) + ~fi CR, (EL $1 

~,(~)=~~(~)~~P(--~~~~~~E~~P(-~)B,(R,(%),%) 

We apply the functional differentiation operator Zi~u~(x,,~) to (1.10). Taking into 
account the fact that &u, (x, t)/6u, (x1, F;) = 8,,8 (x - xl)8 (t - %), the causality principle /9/ and 
the independence of the initial values of the particle coordinates, velocity and temperature 
from the random fields, we obtain a system of integral equations for finding the functional 
derivatives: 
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(1.11) 

Q-$~ (t) 
8Uj (w 5) =60[1-e++j] 6(x,--R,(E)) + 

It follows from (1.7) that a closed expression for (ULQ)) can only be obtained for a 
random field n (x. t) that is b-correlated in time: 

c"i (%, t&J b,. b)> - 6 @I - h) 

because in this case there are funtional derivatives at e = t in the expression for (ukQ)). 
In the general case the autocorrelation function for turbulent fluctuations has a finite decay 
time. Here it is necessary to use an approximate solution for system (1.11). We introduce 
the parameter e = l/L, where I= TEu(TE is the characteristic decay time for the time 
correlation of the carrier flow and u is the characteristic value of the velocity fluctuations 
of the carrier flow), and L is the length scale for variations in the averaged quantities. In 
the case when e<1 the inhomogeneity of the turbulent flow, to within terms of the order 
of e2 can be taken into account using the first-order approximation to the system (1.11) /lo, 
ll/ 

aR, 4 (t) 
---=6rj[l-eXP(-_j]6(xl-RR,(E)), du~;,~~j =o 6Uj (XI, e, 

Similarly, to within terms of order .sB one can compute the functional derivatives of the 
particle velocity, coordinates and temperature with respect to the temperature fluctuations 
of the carrier phase. As a result we obtain expressions for the correlations (nkQ)) and@,@) 

(1.12) 

The functional derivative of @ with respect to the temporally b-correlated random field 
f is equal to 

where D is the Brownian diffusion coefficient of the particles. 
The coefficients q and g are found from the relations 

(1.14) 
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As can be seen from formulae (l.l4),the entrainment coefficients $7 and q of the particles 
in the turbulent fluctuations of the carrier phase and determined by the Lagrangian flu&U- 
ation correlations of the characteristics of the carrier phase computed along the particle 
trajectories. The two-point correlation moments which occur in expressions (1.14), as in /12, 
13/, are approximated by the step function 

(U,(Rp ce,. E) Yk (x. t)) (@I (Rn (EL E) ui (x, 0) (ui CR, (E). E) ‘1(x* (t)) = 
<“ph.) te,u,> &Ui> 

= (1.15) 

(01 (B,(E). E) '31 (x. 0) 

i 

1. It--~I~~p 
(81') = 0, It-_l>T, 

Here Tp is a characteristic interaction time for the particles with the turbulent field, 
given in the form 

T,= df 5 (“i (RI, (%)v 6) uf (~7 t)> 

0 
<UiUj> 

To a first approximation the time T, can be taken to be equal to the integral time-scale 
for the turbulence. Using (1.15) we obtain from (1.14) the following expressions for the 
entrainment coefficients of particles in the fluctuating.motion 

9uu = p;a = 1 - exp (-l/Q,), pee = q&r = 1 - exp (--1/Q) 

B - g,e = 1151, - 1 + exp (-l/Q,), Q, = T,/T,, S-l8 = ze/Tp "U - 

Substituting expressions (1.12)-(1.13) into (1.5), we obtain a closed equation for the 
PDF of the particles in the turbulent flow: 

q.p +v,2g + t + [(c"k> + Fk - vk) @>I + 

+](J@& -O)<@)]= 
a=@,, 

g,, C”iuk)m + 

(1.16) 

f c7U” <Wk) + - 
u i 

4” ;) * + $ g”e <al~;~ + 

i 

%Le - 

% 
+~)(01Ili)* ++4el?(e18)~’ 

Integrating Eq.(1.16) with respect to temperature, we can write down the equation for the 

particle PDF with respect to coordinates and velocity (@v(x, V,t)) = S~~<D((X,V,~,~)) 

a (0,) 
7+ Vk 

a (a+ i a 
r + i;av, [((“k> + Fk - vk) <%'>I = 

k 

aa (my) 
guu (UfUk> r 

Dbik 
+ $ (q.. +f"k> + F 

al CD,) 

* h 
avav * k 

(1.17) 

For laminar flow (<u,ur> =0) Eq.(1.17) reduces to the Fokker-Planck equation for Brownian 
particles ;14/. For highly inertial particles Q,>) I (g=,, - l/Q,*, guuu- 1/Q,,) Eq.(1.17) agrees 
with the PDF equations obtained in /l/. We note that the PDF equations in /l/ can be obtained 
assuming temporal &-correlation of the carrier flow's turbulent velocity field fluctuations. 

2. Equations for the moments. We define the averaged number denisty, velocity and tem- 
,perature of the discrete phase 

(N (X, )> = s CNde <@ (x9 v, e-t)> 

<N (X, t)>(& (x, t); = 5 dvde& <@(x9 v, 8, t): 

<n; (x, we, (x, t)> = 5 dvdee <@ IX, v, 8, t)? 



In this system of notation 
using variables =, "9 6r and t, 

for the moments, the PDF Eq.(1.16) can be conveniently written 
(where v = V -(V) and 6 = @-(0,) are the velocity and 

temperature fluctuations of the discrete phase): 

aoh> 
* +<Fk)F -~~+~~~~~j~_ (2.9 

ace,, ka<tD>' 
q+ Wk>~)_aB + ++(<U,> f Fi- <Vi>) <@>I + 

t~I((e;,--(R,>)(~)l-~~V,(s>---t~8(~) + t 
a tab 3 (1;) a (CD) a @a> a m 

%-811,-Q,,,, k i 
-ea’kae= 

Dajk B<V$ 

+&pn> + 7 --z;&d@i~r>a+, 
1 

a~&9 
- + av,au, 

-$ %wW~ 
( 

-T.c,gut3(%4>~* + bL<uj%>e*+ 

B"<cp> 
* gue <+-wi>-J@jy + 

[ 
-+,s <%Q 

B<Vj) 

--ugue<~l~‘) -y$cy 
t 4 

!I s <cp> 
- aujae 
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Integrating Eq.(2.11 over velocity space and temperature, we obtain an equation for the 
averaged particle number density 

Multiplying (2.11 by vi and integrating over velocity space and temperature, we obtain 
an equation for the average velocity of the solid phase 

(2.Q 

where (v,v,)(N) = 1 dvdevfvR (CD) is the Reynolds stress tensor appearing in the solid phase as 
a result of the particles participating in the fluctuating motion, and D,, is the turbulent 
diffusion coefficient of the particles. 

From Eqs.(2.2) and(2.31 we have adensity balance equation (of hyperbolic type) 

f2.4f 

We note that the scattering process for the passive admixture is described by diffusion 
equations of parabolic type, for which the concentration of admixture at any instant of time 
even at an infinite distance from the source of the admixture (for diffusion in an unbounded 
medium) is non-zero. In the case of the scattering of an admixture of inertial particles the 
concentration of particles is localized in space , as a consquence of the hyperolic nature 
of Eq.(2.4). 

Multiplying Eq.(2.11 by 8 and integrating over velocity space and temperature, we obtain 
an equation for the average temperature of the solid phase 

where <e1vti><h9 = S -64 <@p> is the turbulent heat flux appearing in the solid phase as a 
result of particle entrainment in the fluctuating motion, and r>,e is the coefficient of 
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turbulent thermal diffusion. 
Multiplying (2.1) by uivj, Bvi, and 0" and integrating over velocity space and tempera- 

ture, we can write down equations for the second moments of the velocity and temperature 
fluctuations of the discrete phase: 

(viuk) 
a (VI> awi) 1 

7 + +j"k>~ = - 
k k Tc! 

i 
a (.uj) 

Tug”” <"iuk> 7 
k 

a GETUP) 
at + Wk> 

a a~,) 1 ar+- 
a ~~P~LJ~~ 07) a (v() 

k (N) ax, + <GA) aZ, + 

(2.6) 

(2.7) 

where ("fujvk>V (ekulUk>r and (f3k2vk) are third moments of the velocity and temperature fluctu- 
ations of the discrete phase. 

In the case of statistically stationary turbulence, and assuming small gradients in the 
averaged quantities, (2.5)-(2.7) imply the following relations between the second moments of 
the velocity and temperature fluctuations of the solid and carrier phases: 

(2.8) 

From expressions (2.8) it is clear that small particles Q,, Qa <1 are completely 
entrained in the fluctuating motion of the carrier phase (4 -+ 11, whereas large (inertial) 
particles do not participate in the fluctuating motion (q-+0). 

3. The approdmation of stationary, homogeneous and isotropic turbulence. In this case 
(utuj> = 2/&6fj, @,u,)= 0 (the velocity and temperature fields are not correlated with one 
another). It follows from (2.1) that the PDF for isotropic turbulence becomes a product of 
the normal velocity and temperature distributions 

(3.1) 

For small particles (q-1) expression (3.1) becomes the PDF for the velocity and 
temperature of the turbulent carrier flow. The normal distribution for the PDF of velocity 
fluctuations of single-phase turbulent flow is established, for example, in /15/, while in 
/4/ it is shown that the normal law satisfactorily describes the distribution of admixture 
concentration and temperature in non-intermittent domains. As the particle inertia increases, 
distribution (3.1) tends to a g-function: 

ij?_ (0 (~7 v, 6 t)> = 0’) 6 (V - <v (x, t)) 6 (e - <e, (x, t)>) 

*e--n 
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TRIPLE-WAVE POTENTIAL FLOWS OF A POLYTROPIC GAS* 

S.V. MELESHKO 

A system of equations describing triple-wave solutions for unsteady 
isentropic potential flows of a polytropic gas was derived in /l/. A 
family of exact triple-wave solutions of the equations of gas dynamics 
with three arbitrary functions of one argument was constructed in /2/ 
for i<T<2. Some applications and properties of this family were 
studied. In this paper we show that the triple-wave equations of /l/ 
are a system in involution and depend on one arbitrary function of two 
arguments. 

1. The equations of motionof polytropicgas in the unsteady isentropic case can be 
written in the form 

duldt + V8 = 0, d8/dt f x8 div u = 0 

0 = c=ix, x = y - 1 > 0, dtdt = am + u,aiaxa 
(I.11 


